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Abstract: Calibration estimation is currently the most popular method of estimation using auxiliary information.
Its major idea is to use auxiliary information to structure calibration weights, attaching them to survey data, in or-
der to improve the accuracy of the gross or mean estimation. Calibration estimation problem with box constraints
is equivalently to solve a nonlinear equations system. Mnnich at el proposed a semismooth Newton method for
solving this system in [Calibration of estimator-weights via semismooth Newton Method. J. Glob. Optim. 52
(2012):471-485]. In this paper, we give more specific analysis about the semismooth Newton method and some
numerical experiments have been reported. On the basis of that, a smoothing Newton method has been proposed
and proved to be globally convergent without any assumptions and locally superlinearly convergent under certain
assumptions. Numerical results show that both semismooth Newton method and smoothing Newton method are
effect for solving the calibration estimation problem.

Key–Words: Calibration estimation; Auxiliary information; Sample weights; Semismooth Newton method;
Smoothing Newton method; Global convergence

1 Introduction

Calibration estimation is an estimation method com-
bining survey sampling theory and auxiliary informa-
tion. Meanwhile, it has an important role in research
dealing with the problem of non-response, sample ro-
tation and so on. At present, there are many statistical
softwares to calculate calibration weights with both
advantages and disadvantages. In the practice of sta-
tistical agencies at all levels, it increasingly reflects
that large-scale statistical estimation problems, which
can not be resolved timely and effectively. The core
content of calibration estimation method is to solve
the calibration weights, which is an optimization pro-
cess. This provides an opportunity to introduce opti-
mize methods to efficiently and effectively for solving
the calibration estimation problem.

Weighting is a common methodology in survey
statistics to estimate the population value according to
data from sampling [1]. This thought origins from the
research of Hansen and Hurwitz (1943) [2], Horvitz
and Thompson (1952) [3]. They use the reciprocal of
the inclusion probabilities from a survey as weights
to estimate the population value. Gradually, many
weighting methods and estimators emerge, such as
Post-stratification Estimator, Raking, Generalized Re-
gression Estimator. Calibration estimation is a devel-
opment of this weighting thought, which is originally

proposed by Deville and Särndal(1992) [5, 6]. Its
main idea is to formulate calibration equations accord-
ing to different auxiliary information. Under the con-
straints of those equations, given a specific distance
function, the classic Horvitz-Thompson estimator is
optimized in order to derive the calibration estima-
tor. This method is also called the minimum distance
method. Nowadays scholars pay great attention to this
method, which has been widely used in some national
statistical agencies at all levels [8, 9, 10, 11, 12].

Recently, a lot of smoothing Newton algorithms
have been proposed for solving various optimization
problems [15, 16, 17, 18]. The idea of smoothing
Newton methods is to reformulate the problem con-
cerned as a system of smooth equations by using re-
formulation function, where some smoothing function
is used. Instead of solving the original problem, one
solves the reformulated problem so that a solution of
the original problem can be found.

In this paper, we use a smoothing Newton method
to solve the calibration estimation problem with box
constraints. Münnich, Sachs and Wagner (2011) [13]
reformulated the basic calibration optimal model and
derived an equation system using the projection func-
tion and KKT conditions. They show that solving the
calibration problem is equivalent to find a solution of
the equation system. This reformulation greatly re-
duces the dimension compared to the original prob-
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lem. Therefore, the computing effort of different algo-
rithms to solve this problem has been significantly re-
duced. In this paper, we continue to apply their model
to study the calibration problem.

In section 2, we briefly introduce the basic cali-
bration optimal model and the reformulated optimal
model with box constraints. In section 3, on the ba-
sis of results in [13], we give more specific analysis
about the semismooth Newton method and some nu-
merical experiments have been reported. In section 4,
we propose a smoothing Newton method to solve the
equation system derived by the calibration problem.
Then, we make a comparison among the R algorithm
’calib’ created by the group of Yves Tillé [12], the
semismooth Newton method and the smoothing New-
ton method.

A few words about our notation. ℜn denotes the
space of n-dimensional real column vectors and ℜ+

(respectively, ℜ++) denotes the non-negative (respec-
tively, positive) orthant in ℜ. For an index set A, ΣA

is a shorthand for Σk∈A, e.g., ΣAyk = Σk∈Ayk. For a
function G : ℜn → ℜm, let G′(x, h) be the direction
derivative of G at x in the direction h; G′(x) be Ja-
cobian matrix and ∇G(x) be the transpose Jacobian
matrix of G at x ∈ ℜn where G is F -derivative. De-
note ∂G be the generalized Jacobian of G, i.e.

∂G(x) = conv (∂BG(x))

where conv(S) denotes the convex hull of the set S,
and

∂BG(x) =

{
lim

xj→x;xj∈DG

G′(xj)

}
.

If {αK} and {βK} are two sequences in ℜ with βK ̸=
0, for all K = 1, 2, . . ., αK = O(βK) means

lim sup
k→+∞

αK/βK = C

with C ̸= 0; and αK = o(βK) means

lim sup
k→+∞

αK/βK = 0.

2 Optimal model of calibration esti-
mation

Consider a finite population U = {1, . . . , k, . . . , n},
from which a probability sample s(s ⊆ U) is drawn
with a given sampling design, p(·). The inclusion
probabilities

πk := Pr(k ∈ s) =
∑

s:k∈s p(s),
πkl := Pr(k&l ∈ s)

are assumed to be strictly positive. yk is the value of
the variable of interest y, for the kth population ele-
ment and an auxiliary vector value associating with y
is

xk = (xk1, . . . , xkj , . . . , xkp)
T .

The population total of x, tx =
∑

U xk is assumed to
be accurately known. This knowledge may come from
one or more sources, such as census data, administra-
tive data files, and others.

One objective is to estimate the population total
ty =

∑
U yk, by the values of the variable of inter-

est y, and auxiliary vectors x from sampling, together
with the population total of x. By modifying the basic
sampling design weight dk = 1/πk, that appear in the
Horvitz-Thompson estimator of ty, which is from the
idea of [3, 4], that is,

t̂yπ =
∑
s

yk/πk =
∑
s

dkyk.

Calibration estimation method [5, 6] uses a new
series of weights wk, (k = 1, . . . , n) to derive a new
estimator of ty, t̂y =

∑
swkyk. The choice of wk

should follow two rules. First, calibration estimator
wk should exactly estimate the population total or the
mean value of x. Namely, it should satisfy the cali-
bration equation

∑
swkxk = tx. Second, wk should

be as close as possible to dk in an average sense for
a given metric Fk(w, d). Mathematically, we use the
expectation of Fk(w, d) with respect to the sampling
design to measure the average distance. For all s, min-
imizing this equation is equivalent to minimize the
sum of Fk(w, d),

∑
s Fk(w, d), for any given s. Here

we use an optimal model to illustrate the above state-
ment

min
∑

s Fk(wk, dk)

s.t.
∑

swkxk = tx
(1)

In this way, wk is called calibration weights and t̂y =∑
swkyk is the calibration estimator. Therefore, the

main job of calibration estimation is to solve problem
(1). This method to solve calibration weight wk is also
called the minimum distance method. To sum up, we
give the definition of calibration estimation as follows,
which is from [7].

Definition 1 (Calibration Estimation) The calibra-
tion approach to estimation for finite populations con-
sists of

(1) a computation of weights that incorporate spec-
ified auxiliary information and are restrained by
calibration equation,
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(2) the use of these weights to compute linearly
weighted estimates of totals and other finite pop-
ulation parameters: weight times variable value,
summed over a set of observed units

(3) an objective to obtain nearly design unbiased es-
timates as long as non-response and other non-
sampling errors are absent.

The essence of calibration estimation is to solve
the optimal problem (1). The objective function
Fk(w, d) of the problem is a specific distance func-
tion. The choice of the distance function Fk(w, d)
plays an important role in solving this problem, since
it may to some extend affect the CPU time of calcu-
lating the resulting calibration weights and their accu-
racy.

From [5, 6], we can find that for a proper distance
function Fk(w, d), it should have the following prop-
erties:

(1) for every fixed d > 0, Fk(·, d) is defined on
an interval Dk(d) containing d, and such that
Fk(d, d) = 0;

(2) for every fixed d > 0, Fk(·, d) is nonnegative,
differentiable with respect to w, strictly convex;

(3) fk(w, d) = ∂Fk(w, d)/∂w is continuous and
maps Dk(d) onto an interval Imk(d) in a one-
to-one fashion.

In most of our applications, for every k we choose
the same distance function F (w, d), where f(w, d) =
f(w/d). Let g = w/d, then f is a function of
the single argument g, strictly increasing, and such
that f(1) = 0, f ′(1) = 1. Meanwhile, we can
let the kth term have an individual, known positive
weight 1/qk, unrelated to dk, to adjust every term, i.e.
Fk(w, d) = F (w, d)/qk. Table 1 shows two exam-
ples of distance functions Fk(w, d). For more distance
functions, please refer to [5, 6].

Table 1: Examples of Distance Functions Fk(w, d)

Case
F (wk, dk) =
qkFk(wk, dk)

f(gk) =
qkfk(wk, dk)

1 dk
(gk−1)2

2 gk − 1

2 dk(gk · ln(gk)− gk + 1) ln(gk)

Due to the occurrence of unrealistic or extreme
weights wk when choosing different distance func-
tions, we define the convex, closed set of box con-
straints

Ū =
{
g = (g1, · · · , gn)T ∈ ℜn : mk ≤ gk ≤ Mk

}
(2)

where we assume 0 ≤ mk ≤ 1 ≤ Mk and mk < Mk

and gk are called the calibration factors.
Then we give the optimal model of calibration es-

timation with box constraints, and write it as matrix-
vector form, which can be also seen in [13].

Let 0 < p < n < ∞,

xk = (xk1, · · · , xkp)T ∈ ℜp,

for k = 1, . . . , n. Let xki be the value of the kth cali-
bration variable for the ith sample element. Denote

d = (d1, · · · , dn)T ∈ ℜn

be the vector of the design weights. Meanwhile, there
are calibration benchmarks ti(i = 1, . . . , p), and

tx = (t1, · · · , tp)T ∈ ℜp,

is the vector of the calibration total.

m = (m1, · · · ,mn)
T ∈ ℜn,

M = (M1, · · · ,Mn)
T ∈ ℜn

are constraints vectors. We define the following ma-
trices:

XT := (x1, · · · , xn) =

 x11 · · · xn1
...

. . .
...

x1p · · · xnp



D := diag(d1, · · · , dn)

X̄T := (ξ1, · · · , ξn) =

 ξ11 · · · ξn1
...

. . .
...

ξ1p · · · ξnp


=

 x11d1 · · · xn1dn
...

. . .
...

x1pd1 · · · xnpdn


where X̄T is called the design matrix.

Let F be a nonnegative, strictly convex, twice
continuously differentiable function

F : ℜ+ → ℜ+,

which satisfies

F (1) = 0, F ′(1) = 0, and F ′′(1) = 1.

We define

F : ℜn
+ → ℜn

+,
F(g) = (F (g1), · · · , F (gn)) .
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Then we can easily verify that

F (wk, dk) = dkF (gk), k = 1, . . . , n

satisfy the properties of a distance function, and all
functions in Table 1 can be written as this form. In or-
der to simplify the problem, let qk = 1(k = 1, . . . , n).
Then

Fk(wk, dk) = F (wk, dk) = dkF (gk),
(k = 1, . . . , n).

In the following, we assume that s = U . To
sum up, the optimal model with box constraints can
be written as

min dTF(g)
s.t. h(g) := X̄Tg − tx = 0

u(g) := g −M ≤ 0
v(g) := m− g ≤ 0

(3)

In the following, we consider the above general cali-
bration problem (3).

We define a map

g : ℜp → ℜn
+

componentwise as

gk(λ)

= Proj[mk,Mk]

(
F ′−1

(
− ξTk λ

dk

))

=



Mk, if F ′−1

(
−ξTk λ

dk

)
≥ Mk;

F ′−1

(
− ξTk λ

dk

)
, if mk < F ′−1

(
−ξTk λ

dk

)
<Mk;

mk, if F ′−1

(
− ξTk λ

dk

)
≤ mk,

where Proj[a,b](c) is the function that projects c into
the interval [a, b] and mk,Mk are defined in (2). Since

Proj[a,b](c)
= mid{a, b, c}
= 1

2(a+ b−
√
(b− c)2 +

√
(a− c)2)

where mid{a, b, c} denotes the middle number be-
tween a, b, c, which is defined in [15]. Then we can
rewrite gk in this way,

gk(λ) =

1
2

mk +Mk −

√(
Mk − F ′−1

(
− ξT

k
λ

dk

))2

+

√(
mk − F ′−1

(
− ξT

k
λ

dk

))2
 ,

for k = 1, . . . , p.
The next theorem gives that we can get the solu-

tion of (3) by solving other equations.

Theorem 2 ([13, Theorem 3]) A vector g∗ ∈ ℜn is
the unique solution of the optimization problem (3) if
and only if there exists a multiplier λ∗ ∈ ℜp such that
g(λ∗) satisfies

h(g(λ∗)) = 0 (4)

In the general case, p < n always holds. There-
fore, solving (4) is much easier than solving (3). The-
orem 2 also states that finding a solution of the cali-
bration problem (3) is equivalent to solve the equation

Ψ(λ) = 0 (5)

where

Ψ : ℜp → ℜp, λ 7→ X̄Tg − tx.

with

Ψi(λ) =

1
2

n∑
k=1

ξki

mk +Mk −

√(
Mk − F ′−1

(
− ξT

k
λ

dk

))2

+

√(
mk − F ′−1

(
− ξT

k
λ

dk

))2
− ti.

for i = 1, . . . , p.
In order to solve the non-smooth equations (4),

Münnich, Sachs and Wagner [13] applied the semis-
mooth Newton method to the problem when distance
functions are Case 1 and Case 2, since Ψ are semis-
mooth when choosing those functions. However, in
their paper, they did not give the specific steps of their
semismooth Newton method as well as the proof of its
convergence theorem. We will supplement and mod-
ify their work in the following section.

3 A semismooth Newton method
Münnich, Sachs and Wagner in [13] applied the
semismooth Newton method to solve the non-smooth
equations (4). Then the calibration weights wk can be
easily derived. However, they did not give the specific
steps of their semismooth Newton method. For exam-
ple, they did not give the choice of Hk from the gener-
alized Jacobian ∂Ψ(λ) in the Newton equation. Fur-
thermore, they did not show the proof of the method’s
convergence, see [13]. In this section, we will show
that their semismooth Newton method does not main-
tain convergence property locally and globally.

First, we give the definitions of semismoothness,
which are can be got from [15].

Definition 3 (Semismoothness) Let X ⊆ ℜn and G :
X → ℜm be a locally Lipschitzian function. Then G
is called
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(i) Semismooth in x ∈ X , if for any V ∈ ∂G(x +
h), h → 0,

G(x+ h)−G(x)− V h = o(∥h∥),

(ii) Strongly semismooth in x ∈ X , if for any V ∈
∂G(x+ h), h → 0,

G(x+ h)−G(x)− V h = O(∥h∥2),

(iii) (Strongly) semismooth on X , if G is (strongly)
semismooth in every x ∈ X .

By the definition of strongly semismoothness and
Lemma 4 in [13], we get that Ψ(λ) is strongly semis-
mooth on ℜp for the distance functions Case 1 and 2.

At the non-differentiable points of Ψ(λ), we need
to choose an element Hk form ∂Ψ(λ) when solving
the Newton equation (8). To achieve that, we show
the set ∂Ψ(λ).

Proposition 4 Let Ψ(λ) be defined in (5), then

∂Ψ(λ) = (∂Ψi(λj))p×p ,

with

∂Ψi(λj) = −
n∑

k=1

ξkiξkj
dk

[
F

′−1

(
−ξTk λ

dk

)]′

in the case of that F
′−1

(
− ξTk λ

dk

)
∈ (mk,Mk), for all

k = 1, . . . , n;

∂Ψi(λj) ∈
(
−
∑n

k=1
ξkiξkj
dk

[
F

′−1

(
− ξTk λ

dk

)]′
,

−
∑

k ̸∈S
ξkiξkj
dk

[
F

′−1

(
− ξTk λ

dk

)]′)

in the case of that F
′−1

(
− ξTk λ

dk

)
= mk or Mk, for

k ∈ S ⊆ {1, . . . , n}.

Proof: For i, j = 1, . . . , p, we give the proof of the
desired results of ∂Ψi(λj) by considering the follow-

ing cases: (i) F
′−1

(
− ξTk λ

dk

)
∈ (mk,Mk), for all

k = 1, . . . , n,

and (ii) F
′−1

(
− ξTk λ

dk

)
= mk or Mk, for k ∈

S ⊆ {1, . . . , n}.

Case (i) Suppose that λ satisfies

F
′−1

(
−ξTk λ

dk

)
∈ (mk,Mk).

for all k = 1, . . . , n.
Then Ψ(λ) is differentiable at λ, we have

∇Ψ(λ) = (∂Ψi(λj))p×p =

(
∂Ψi

∂λj

)
p×p

,

where

∂Ψi
∂λj

= 1
2

∑n
k=1

ξkiξkj
dk

[
F

′−1

(
− ξTk λ

dk

)]′


mk−F
′−1

(
−

ξT
k

λ

dk

)
√(

mk−F ′−1

(
−

ξT
k

λ

dk

))2
−

Mk−F
′−1

(
−

ξT
k

λ

dk

)
√(

Mk−F ′−1

(
−

ξT
k

λ

dk

))2


= −

∑n
k=1

ξkiξkj
dk

[
F

′−1

(
− ξTk λ

dk

)]′
.

Case (ii) Suppose that λ satisfies

F
′−1

(
−ξTk λ

dk

)
= mk or Mk,

for k ∈ S ⊆ {1, . . . , n}.

For any k ∈ S, suppose that F
′−1

(
− ξTk λ

dk

)
=

mk, then
mk−F

′−1

(
−

ξT
k

λ

dk

)
√(

mk−F
′−1

(
−

ξT
k

λ

dk

))2
−

Mk−F
′−1

(
−

ξT
k

λ

dk

)
√(

Mk−F
′−1

(
−

ξT
k

λ

dk

))2


→ [−2, 0],

further,

∂Ψi(λj) ∈
(
−
∑n

k=1
ξkiξkj
dk

[
F

′−1

(
− ξTk λ

dk

)]′
,

−
∑

k ̸∈S
ξkiξkj
dk

[
F

′−1

(
− ξTk λ

dk

)]′)
.

Therefore, we complete the proof. ⊓⊔
For any λ ∈ ℜp, let

H(λ) = (hij(λ))p×p (6)

with

hij(λ) = −
n∑

k=1

ξkiξkj
dk

[
F

′−1

(
−ξTk λ

dk

)]′
. (7)

It is easily to show that H(λ) ∈ ∂Ψ(λ). And H(λ)
can be written in the matrix form

H(λ) =
1

2
X̄TDλD

−1X̄,
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where

Dλ =

diag
(
−2

[
F

′−1

(
− ξT1 λ

d1

)]′
, · · · ,−2

[
F

′−1
(
− ξTn λ

dn

)]′)
and D = diag (d).

The next Theorem will prove that for any λ ∈ ℜp,
H(λ) is nonsingular under the condition that X̄ has
full column rank. We choose H(λK) as the matrix
HK in the Newton equation (8).

Theorem 5 If X̄ has full column rank, then for any
λ ∈ ℜp, H(λ) is nonsingular.

Proof: We give the proof by considering the two cases
of F in Table 1.

(i) For Case 1,

F (gk) =
(gk − 1)2

2
.

Then F
′−1 (gk) = 1 + gk, and

(F
′−1 (gk))

′ = 1.

According to Formula (7), we have

hij = −
n∑

k=1

ξkiξkj
dk

, (i, j = 1, 2, . . . , p)′

we have that

H(λ) = −X̄TD−1X̄.

It is easy to get that H(λ) is nonsingular if X̄ has full
column rank.

(ii) For Case 2,

F (gk) = gk · ln(gk)− gk + 1,

then

F
′−1 (gk) = (F

′−1 (gk))
′ = egk .

According to Formula (7), we have

hij = −
n∑

k=1

ξkiξkj
dk

e
−

ξT
k

λ

dk , (i, j = 1, 2, . . . , p),

and

H(λ) =
1

2
X̄T D̃λD

−1X̄,

where

D̃λ = diag

(
−2e

−
ξT1 λ

d1 , · · · ,−2e−
ξTn λ

dn

)
,

which is a negative definite matrix. Then H(λ) is non-
singular if X̄ has full column rank. ⊓⊔

Here we show a semismooth Newton algorithm
for solving the calibration estimation problem.

Algorithm 6 (A Semismooth Newton Algorithm)

Step 1 Given the starting point λ0 ∈ ℜp. Choose σ,
ρ ∈ (0, 12). Set K = 0.

Step 2 If ∥Ψ(λ)∥ = 0, then stop. Otherwise go to
Step 3.

Step 3 Compute △zK ∈ ℜp by

HK△zK = −Ψ(λK), (8)

where HK ∈ ∂Ψ(λK).

Step 4 Set λK+1 := λK +△zK , and K := K + 1,
Go to Step 2.

Remark 7 In Algorithm 6, we choose HK = H(λK),
K = 0, 1, 2, . . .. From Theorem 5, we get if X̄ has full
column rank, then H(λK) is nonsingular. Therefore,
Algorithm 6 is well defined.

We test Algorithm 6 on an example included in
the ’sampling’ package in R. Nevertheless Algorithm
6 can also be applied to higher dimensional prob-
lems. For each sample size, we tested 10 times and
calculated their average value. Each time, samples
were randomly chosen from the population. Algo-
rithm 6 was implemented in Matlab 2010b on an In-
ter(R) Core(TM)2 CPU T5500 @ 1.67GHz and 1GB
RAM.

We consider the computing effort for the semis-
mooth Newton method when solving problems with
different sample size. Here we chose distance func-
tion Case 1. We used the optimal Lagrange multiplier
of the optimization problem without box constraints
as a starting point since we found out that it needed
the least iteration number after several attempts. If we
randomly chose a starting point, the algorithm might
not converge. This is therefore the very disadvantage
of the semismooth Newton method. The results of nu-
merical experiments are shown in Table 2.

Table 2: Computing effort for different problem sizes

n = 185 n = 1, 850 n=18,500

Avg.It 1 1 1
Avg.t(s) 0.03 0.05 0.09

¯∥Ψ(λ)∥ 1.32e-8 2.73e-8 7.62e-8

∥Ψ(λ)∥max 2.84e-8 5.37e-8 1.46e-7

In Table 2, Avg. It denotes the average number of
iterations; Avg.t(s) denotes the average cpu time when
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the algorithm terminates; ¯∥Ψ(λ)∥ denotes the aver-
age value of ∥Ψ(λ)∥ when the algorithm terminates;
∥Ψ(λ)∥max denotes the maximal value of ∥Ψ(λ)∥
when the algorithm terminates.

In Table 2, we find that the advantage of our im-
proved semismooth Newton method is that it can con-
verge after one iteration. With the increase of the sam-
ple size, the CPU time increases linearly, but is still
very short. However, the semismooth Newton method
cannot maintain its convergence property. Therefore,
in the next section, we propose a smoothing Newton
method to solve the same calibration estimation prob-
lem.

4 A smoothing Newton method
In this section, we consider using a smoothing New-
ton method to solve Formula (5). Let z := (µ, λ) ∈
ℜ++ ×ℜp, and Φ : ℜ++ ×ℜp → ℜ++ ×ℜp

Φ(z) =

(
µ

Ψ(µ, λ)− µ

)
(9)

where

Ψ(µ, λ)

= 1
2X̄

T

(
m+M−

√
(M−F′−1(λ))2+µ2e

+
√
(m− F′−1(λ))2 + µ2e− t

) (10)

and e is a column vector whose elements are all one,

F
′−1(λ) =

[
F

′−1

(
−ξT1 λ

d1

)
, · · · , F ′−1

(
−ξTn λ

dn

)]
.

Definition 8 (Consistently smoothing approximation
function) Given G : ℜn → ℜn, G(µ, ·) : ℜn → ℜn is
called the smoothing approximation function of G, if
for every x ∈ ℜn, there exists κ > 0, such that

∥G(µ, x)−G(µ, x)∥ ≤ κµ, ∀µ > 0.

Furthermore, if κ is independent of x, then G(µ, ·) is
called the consistently smoothing approximation func-
tion of G.

Now, we claim that Ψ(µ, λ) is a consistently
smoothing approximation function of Ψ(λ).

Theorem 9 Ψ(µ, λ) is a consistently smoothing ap-
proximation function of Ψ(λ).

Proof: For i ∈ {1, . . . , p}, we have

|Ψi(µ, λ)−Ψi(λ)|

= 1
2

n∑
k=1

ξki

∣∣∣∣∣∣
√(

Mk − F ′−1

(
− ξT

k
λ

dk

))2

−√(
Mk − F ′−1

(
− ξT

k
λ

dk

))2

+ µ2

+

√(
mk − F ′−1

(
− ξT

k
λ

dk

))2

+ µ2

−

√(
mk − F ′−1

(
− ξT

k
λ

dk

))2
∣∣∣∣∣∣

= 1
2

n∑
k=1

ξki∣∣∣∣∣∣∣∣∣∣
−µ2√(

Mk−F ′−1

(
−

ξT
k

λ

dk

))2

+

√(
Mk−F ′−1

(
−

ξT
k

λ

dk

))2

+µ2

+ µ2√(
mk−F ′−1

(
−

ξT
k

λ

dk

))2

+

√(
mk−F ′−1

(
−

ξT
k

λ

dk

))2

+µ2

∣∣∣∣∣∣∣∣∣∣
≤ 1

2

n∑
k=1

ξkiµ
2

∣∣∣∣ 2√
µ2

∣∣∣∣
=

n∑
k=1

ξkiµ.

Therefore,

∥Ψ(µ, λ)−Ψ(λ)∥

≤
√

p∑
i=1

(Ψi(µ, λ)−Ψi(λ))
2

≤ √
p max
1≤i≤p

|Ψi(µ, λ)−Ψi(λ)|

≤ √
p max
1≤i≤p

(
n∑

k=1
ξkiµ

)
=

√
p max
1≤i≤p

(
n∑

k=1
ξki

)
µ

= κµ,

where

κ =
√
p max
1≤i≤p

(
n∑

k=1

ξki

)
.

As κ is independent of λ, Ψ(µ, λ) is a consistently
smoothing approximation of Ψ(λ). ⊓⊔

Choose µ̄ ∈ ℜ++ and γ ∈ (0, 1), such that γµ̄ <
1. Let

z̄ = (µ̄,0) ∈ ℜ++ ×ℜp

and Θ : ℜp+1 → ℜ+,

Θ(z) = ∥Φ(z)∥2,
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and let β : ℜp+1 → ℜ+,

β(z) = γmin{1,Θ(z)}.

Then define a neighborhood

Ω := {z = (µ, λ) ∈ ℜ × ℜp|µ ≥ β(z)µ̄}.

Because β(z) ≤ γ < 1, we have

(µ, λ) ∈ Ω, ∀λ ∈ ℜp.

According to the definition above, we have the
following relationship between those functions.

Lemma 10 Φ(z) = 0 ⇐⇒ β(z) = 0 ⇐⇒ Φ(z) =
β(z)z̄.

Proof: By the definitions of Φ(z) and β(z), we have

Φ(z) = 0 ⇐⇒ β(z) = 0

and
β(z) = 0 =⇒ Φ(z) = β(z)z̄.

Therefore, it just need to prove:

Φ(z) = β(z)z̄ =⇒ β(z) = 0.

If Φ(z) = β(z)z̄, then

µ = β(z)µ̄ and Ψ(µ, λ)− µλ = 0.

Hence, by the definitions of Θ(z) and β(z) and to-
gether with γµ̄ < 1, we have

Θ(z) = µ2 + ∥Ψ(µ, λ)− µλ∥2
= µ2 = (β(z)µ̄)2

≤ γ2µ̄2 < 1.

i.e.,

β(z) = γΘ(z) = γ (β(z)µ̄)2 .

If β(z) ̸= 0, from the equation above and β(z) ≤ γ,
we have

1 = γβ(z)µ̄2 ≤ γ2µ̄2.

This contradicts to γµ̄ < 1, so β(z) = 0. This com-
pletes the proof. ⊓⊔

We can easily see that Φ(z) is differentiable on
ℜ++ ×ℜp. And the Jacobian of Φ(z) is

Φ′(z) =

(
1 0

Ψµ − λ Ψλ − µE

)
(11)

where E is an identity matrix of dimension p and

Ψµ =

(
∂Ψ1

∂µ
, · · · , ∂Ψp

∂µ

)T

,

Ψλ =


∂Ψ1
∂λ1

, · · · , ∂Ψ1
∂λp

...
. . .

...
∂Ψp

∂λ1
, · · · , ∂Ψp

∂λp


= 1

2X̄
TDλµD

−1X̄,

with

∂Ψi
∂µ =

µ
2

n∑
k=1

ξki


√(mk − F ′−1

(
− ξT

k
λ

dk

))2

+ µ2

−1

−

√(Mk − F ′−1

(
− ξT

k
λ

dk

))2

+ µ2

−1
 ,

and
Dλµ = diag

(
d̄1, · · · , d̄n

)
,

with

d̄k =

(F
′−1

(
− ξTk λ

dk

)
)′


mk−F

′−1

(
−

ξT
k

λ

dk

)
√(

mk−F ′−1

(
−

ξT
k

λ

dk

))2

+µ2

−
Mk−F

′−1

(
−

ξT
k

λ

dk

)
√(

Mk−F
′−1

(
−

ξT
k

λ

dk

))2

+µ2


for k = 1, . . . , n.

Next, we show a smoothing Newton algorithm to
solving the calibration estimation problem and prove
that it is well defined.

Algorithm 11 A Smoothing Newton Algorithm

Step 0 Choose δ ∈ (0, 1), σ ∈ (0, 12), and let µ0 = µ̄,
λ0 ∈ ℜp. Set K = 0.

Step 1 If Φ(zK) = 0, then stop. Otherwise, let βK =
β(zK), and go to Step 2.

Step 2 Solve △zK = (△µK ,△λK) ∈ ℜ × ℜp by

Φ(zK) + Φ′(zK)△zK = βK z̄. (12)
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Step 3 Let lK be the smallest nonnegative integer l
satisfying

Θ(zK+δl△zK) ≤
(
1− 2σ(1− γµ̄)δl

)
Θ(zK).

(13)

Step 4 Set zK+1 := zK+δlK△zK , K := K+1. Go
to Step 1.

Lemma 12 For any (µ, λ) ∈ ℜ++ × ℜp, Φ′(z) is
nonsingular.

Proof: From (11), we get that to prove Φ′(z) is non-
singular is equivalent to prove

Ψλ − µE =
1

2
X̄TDλµD

−1X̄ − µE

is nonsingular.
Firstly, we show that Ψλ negative semidefinite.
Since Dλµ = diag

(
d̄1, · · · , d̄n

)
, with

d̄k =

(F
′−1

(
− ξTk λ

dk

)
)′


mk−F

′−1

(
−

ξT
k

λ

dk

)
√(

mk−F
′−1

(
−

ξT
k

λ

dk

))2

+µ2

−
Mk−F

′−1

(
−

ξT
k

λ

dk

)
√(

Mk−F
′−1

(
−

ξT
k

λ

dk

))2

+µ2


for k = 1, . . . , n.

From the next two part, we show that Dλµ is neg-
ative semidefinite.

(i) For any distance function F in Table 1, its
derivative F ′ is continuous, strictly increasing. There-
fore, its inverse function F ′−1 is continuous, strictly
increasing. Then, the value of (F ′−1)′ is always non-
negative.

(ii) For any (µ, λ) ∈ ℜ++ × ℜp, we consider the
function

f(x) =
x− F

′−1

(
− ξTk λ

dk

)
√(

x− F ′−1

(
− ξT

k
λ

dk

))2

+ µ2

.

Its derivative of the first order is

f ′(x) =
µ2[(

x− F ′−1

(
− ξT

k
λ

dk

))2

+ µ2

] 3
2

> 0.

Thus, f(x) is a decreasing function. Then for mk <
Mk, f(mk) ≤ f(Mk), i.e.

f(mk)− f(Mk) ≤ 0.

Therefore, from the two parts (i) and (ii), we ob-
tain that the diagonal elements of Dλµ are all non-
positive, which means that Dλµ is negative semidefi-
nite.

Denote
√
D−1 be a diagonal matrix whose ele-

ments are the square root of the diagonal elements of
D−1. Then D−1 =

√
D−1

√
D−1. So we can rewrite

Ψλ as a symmetric form

Ψλ =
1

2

(√
D−1X̄

)T
Dλµ

(√
D−1X̄

)
.

For ∀q ∈ ℜp,

qTΨλq = 1
2

(√
D−1X̄q

)T
Dλµ

(√
D−1X̄q

)
≤ 0.

Thus, Ψλ is negative semidefinite.
As µ ∈ ℜ++, then we have Ψλ − µE is negative

definite.
Above all, Φ′(z) is nonsingular. This completes

the proof. ⊓⊔

Lemma 13 For any z̃ = (µ̃, λ̃) ∈ ℜ++ × ℜp, there
exists a closed neighborhood N(z̃) of z̃ and a positive
number α̃ ∈ (0, 1], such that for any z = (µ, λ) ∈
N(z̃) and all α ∈ [0, α̃], we have for any µ ∈ ℜ++,

Θ(z+ α△z) ≤ (1− 2σ(1− γµ̄)α)Θ(z) (14)

holds, where △z = (△µ,△λ) ∈ ℜ×ℜp is the unique
solution to the following equation:

Φ(z) + Φ′(z)△z = βz̄.

Proof: The proof is similar to that of Lemma 5 in [15].
The detail is omitted. ⊓⊔

Remark 14 Algorithm 11 is well defined. As

(i) the Newton equation (12) is well defined, since
Φ′(zK) is nonsingular from Lemma 12.

(ii) the linesearch step (13) is well defined from
Lemma 13

By a similar discussion with [15, Proposition 8],
we can get the following lemma.

Lemma 15 Assume that X̄ has full column rank, then
Algorithm 11 generates an infinite sequence zK and
{µK} ⊆ ℜ++, {zK} ⊆ Ω.
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Lemma 16 The sequence {zK} generated by Algo-
rithm 11 is bounded.

Proof: From the linesearch (13), Θ(zK) is decreas-
ing. It is sufficient to show that the level set

L(z0) := {z|Θ(z) ≤ Θ(z0)}

is bounded.
Suppose that L(z0) is unbounded, we will induce

a contradiction. Then, for the sequence {zK}, there
exists a subsequence, without generation, we still de-
note it as {zK} such that {zK} ⊂ L(z0) and

∥zK∥ → ∞.

As {µK} is nonnegative and decreasing, we have
{µK} < µ̄. Therefore, there must exist at least one
sequence {λK

i }, i ∈ {1, . . . , p} of the components of
{λK}, such that |λK

i | → ∞.
We also have

Θ(z) = ∥Φ(z)∥2 = µ2 + ∥Ψ(µ, λ)∥2
= µ2+
p∑

i=1

(
1
2

n∑
k=1

ξki (mk +Mk−√(
Mk − F ′−1

(
− ξT

k
λ

dk

))2

+√(
mk − F ′−1

(
− ξT

k
λ

dk

))2
− ti − µλi

2

= µ2+
p∑

i=1

(
1
2

n∑
k=1

ξki (mk +Mk−(
mk−F

′−1

(
−

ξT
k

λ

dk

))2

−
(
Mk−F

′−1

(
−

ξT
k

λ

dk

))2

∣∣∣∣mk−F
′−1

(
−

ξT
k

λ

dk

)∣∣∣∣+∣∣∣∣Mk−F
′−1

(
−

ξT
k

λ

dk

)∣∣∣∣


−ti − µλi)
2

= µ2+
p∑

i=1

(
1
2

n∑
k=1

ξki (mk +Mk−

m2
k−M2

k−2F
′−1

(
−

ξT
k

λ

dk

)
(mk−Mk)∣∣∣∣mk−F

′−1

(
−

ξT
k

λ

dk

)∣∣∣∣+∣∣∣∣Mk−F
′−1

(
−

ξT
k

λ

dk

)∣∣∣∣


−ti − µλi)
2

When {λK
i } approaches infinity, by using the fact that

F
′−1 is a monotonic function, we have

lim
∥zK∥→∞

Θ(zK) = ∞,

which contradicts that

0 ≤ Θ(zK) ≤ Θ(z0), ∀k = 1, 2, . . . .

Therefore, the sequence {zK} is bounded. ⊓⊔
The following theorem shows that Algorithm 11

is global convergent.

Theorem 17 Assume that {zK} is generated by Al-
gorithm 11, then any accumulation point of {zK} is a
solution of Φ(z) = 0.

Proof: The proof is similar to that of Theorem 4 in
[15]. ⊓⊔

The following theorem shows the superlinear and
quadratic convergence of Algorithm 11.

Theorem 18 Assume that {zK} is generated by Al-
gorithm 11, then the sequence {zK} converges to z*,
and

∥zK+1 − z∗∥ = o(∥zK − z∗∥)
and

µK+1 = o(µK).

Meanwhile, if Φ(z) is strongly semismooth at the
point z∗, then

∥zK+1 − z∗∥ = O(∥zK − z∗∥)

and
µK+1 = O(µK).

Proof: The proof is similar to that of [15], Theorem
8. ⊓⊔

From Theorem 4 and Theorem 5, we can see
that the smoothing Newton method is global conver-
gent without any assumptions and locally superlin-
early convergent with some conditions.

We chose distance functions Case 1 and Case 2,
and applied our smoothing Newton method to solving
the corresponding calibration estimation problem with
the same sample size. Then we compared their com-
puting efforts in Table 3 and Table 4. After several
attempts, we used the optimal Lagrange multiplier of
the optimization problem without box constraints as a
starting point for the same reason as we mentioned in
the semismooth Newton method.

Table 3: Computing effort for distance functions Case
1

n It t(s) ¯∥Ψ(λ)∥ ∥Ψ(λ)∥max

185 2 0.09 5.02e-7 8.69e-7
1,850 1 0.10 7.33e-7 8.35e-7
18,500 2 0.62 7.68e-7 9.84e-7

Both the semismooth Newton method and the
smoothing Newton method can be used to solve the
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Table 4: Computing effort for distance functions Case
2

n It t(s) ¯∥Ψ(λ)∥ ∥Ψ(λ)∥max

185 6 0.13 1.59e-7 9.81e-7
1,850 4 0.20 4.54e-7 8.26e-7
18,500 4 1.34 5.03e-7 9.94e-7

calibration problem with different distance functions.
Meanwhile, they both show good efficiency and re-
sults according to the numerical experiments. For
distance function Case 1, the semismooth Newton
method only runs one iteration, while the smoothing
Newton method is as good as it. Due to the complex-
ity of distance function Case 2, the number of itera-
tion is larger than and the time is longer than those
of Case 1. However, the results of the problem under
distance function Case 2 may be much accurate than
that of Case 1. Therefore, it has both advantages and
disadvantages when choosing different distance func-
tions. In the application, we should carefully choose
a proper distance function according to different de-
mand.

We also made a comparison among the semis-
mooth Newton method, the smoothing Newton
method and the ’Calib’. Here we chose the same dis-
tance function Case 1 to solve problems with different
sample size. The results are shown in Table 5.

In Table 3-5, Avg.It denotes the average num-
ber of iterations; Avg.t(s) denotes the average cpu
time when the algorithm terminates; ¯∥Ψ(λ)∥ denotes
the average value of ∥Ψ(λ)∥ when the algorithm ter-
minates; ∥Ψ(λ)∥max denotes the maximal value of
∥Ψ(λ)∥ when the algorithm terminates.

In Table 5, we can conclude that ’Calib’ is still
the quickest algorithm to solve the calibration estima-
tion problem. The Semismooth Newton method is as
good as ’Calib’ since it only runs one iteration. How-
ever, the very disadvantage of those two algorithms is
that they cannot maintain convergent property. On the
other hand, the smoothing Newton method has been
proved to have the global convergence without any as-
sumptions and the local superlinear convergence un-
der certain assumptions, and its numerical results are
equally perfect compared to the other two algorithms.

5 Conclusion
This paper focuses on solving the calibration estima-
tion problem with box constraints. On the basis of the
optimal model with box constraints, improvement has
been made to refine the existing semismooth Newton

Table 5: Comparison among three algorithms

Semismooth
Newton method n = 185 n = 1, 850 n=18,500

Avg.It 1 1 1
Avg.t(s) 0.03 0.05 0.09

¯∥Ψ(λ)∥ 1.32e-8 2.73e-8 7.62e-8
∥Ψ(λ)∥max 2.84e-8 5.37e-8 1.46e-7
Smoothing

Newton method n = 185 n = 1, 850 n=18,500
Avg.It 2 1 2

Avg.t(s) 0.09 0.10 0.62
¯∥Ψ(λ)∥ 5.02e-7 7.33e-7 7.68e-7

∥Ψ(λ)∥max 8.69e-7 8.35e-7 9.84e-7
Calib n = 185 n = 1, 850 n=18,500
Avg.It 1 1 1

Avg.t(s) 0.06 0.07 0.09
¯∥Ψ(λ)∥ 9.86e-13 5.30e-12 1.48e-10

∥Ψ(λ)∥max 1.42e-12 8.35e-12 3.46e-10

method. Corresponding numerical experiments have
been done to test it. Furthermore, a smoothing New-
ton method has been designed to solve the same prob-
lem. A comparison has been made through numeri-
cal experiments among semismooth Newton method,
smoothing Newton method and ’Calib’. From the re-
sults of numerical experiments, ’Calib’ algorithm is
still the quickest and most efficient algorithm for solv-
ing the problem. After the improvement of semis-
mooth Newton method, it also comes out of one step
of iteration. Its efficiency has been improved signifi-
cantly. The smoothing Newton method can have the
global convergence without any assumptions and the
local superlinear convergence under certain assump-
tions. Since the core content of calibration estimation
method is an optimization process, it is possible to
introduce some other optimize methods to solve this
problem, for example, alternating direction method,
proximal-like algorithm et al. These deserve to be fur-
ther investigated.
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Journées de Méthodologie, INSEE: Pairs, 2002.

[9] C. Vanderhoeft, E. Waeytens and J. M. Museux,
Generalised calibration with SPSS 9.0 for Win-
dows baser, In Enqutes, Modles et Applications
(Eds. J. J. Droesbeke and L. Lebart): Paris,
Dunod, 2001.

[10] C. Vanderhoeft, Generalised calibration
at Statistics Belgium, http://www. statbel.
fgov.be/studies/paper03en. asp, 2012.

[11] N. J. Nieuwenbroek and H. J. Boonstra, Bascula
4.0 for weighting sample survey data with es-
timation of variances, The Survey Statistician,
2002.
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